

Ribav Integration within Ripflow v.3

By: Joaquin Real

Technical University of Valencia-Spain Institute of Water and Environmental Engineering

RIPFLOW PROJECT: Klagenfurt meeting 29/04/10

- 1. Ribav conceptualization.
- 2. Ribav Parameters.
- 3. Ribav 1D.
- 4. Ribav 2D.
- 5. Methods to integrate Ribav 2D within Ripflow.

1. RibAV conceptualization

- Elements:
 - \rightarrow 1.Vegetation
 - \rightarrow 2. Static tank-unsaturated zone
 - \rightarrow 3. Saturated zone
- Inputs (time series):
 - $\rightarrow PP_{(t)}$: Precipitation
 - \rightarrow ETP_(t): Potential ET
 - \rightarrow River daily discharges

1. RibAV conceptualization

- Processes:
 - → Tank Water Excess (Runoff +percolation)
 - \rightarrow Transpiration:
 - Saturated Soil
 - Non saturated Soil
 - Plant drowning (then ET=0)
 - $\rightarrow Acap_{(t)}$: Soil capillary rise
 - $\rightarrow Ahf_{(t)}$:Root hydraulic lift

2. Ribav Parameters

1. Ribav Basic Parameters

		A, SOIL	. BASIC PA	RAMETERS		
SOIL Type	0 Porosity []	λ Porosity Index	Hb Bubble Pressure [Kpa]	Saturated Hydraulic Conductivity [mm/hr]	BCC Field Capacity Moisture at 33Kpa []	Minimum Capillary Depth to be Considered [m]
	a.2	a.5	a.4	a.3	a.1	a.7
	Pst	lp	Pb	Ks	Mfc	ZCmin
1	0.401	0.4556	5.837	36.78	0.18	17
2	0.412	0.314	4.403	22.62	0.221	17
3	0.407	0.266	2.475	32	0.205	17
n						17

				B. V	EGETATIC	N BASIC	PARAMET	ERS		
Vegetation Type	Maximum Root Depth [m]	Effective Root Depth [m]	Extinction at Saturation [m]	Transpirat ion Factor from Unsaturat ed Zone []	Transpirat ion Factor from Saturated Zone []	λν Plant Cover []	Maximum Soil-Root Water Conducta nce [mmMpa ⁻ ¹ h ⁻¹]	Wilting Point Pressure [Kpa]	Critical Point Pressure [Kpa]	Vegetation Type Description
	b.3	b.4	b.5	b.9	b.6	b.7	b.8	b.2	b.1	
	Zr	Ze	Zsat	Ri	Rj	Cov	Crt	Pwp	Pcrit	
1	0.8	0.7	-0.75	0.8	0.6	1	0.97	1500	500	Riparian Herbs (RH)
2	1.25	0.9	-0.1	0.9	0.35	0.8	0.97	1500	500	Riparian Juveniles and small Schrubs (RJ)
3	3.5	0.9	-0.3	0.9	0.35	1	0.97	1500	250	Riparian Adults Trees and Schrubs (RA)
4	2	1.9	0.3	1	0	1	0.97	1500	95	Terrestrial Vegetation (TV)

2. Ribav Parameters

2. Other Input Parameters

O, DAIL H	HYDROME	TEOROLO	GICAL					D. RATING	CURVES			
	INPU Daily	TS Potential Evapotran			Flow Transect 1	Rivel Level Transect 1	Flow Transect 2	Rivel Level Transect 2	Flow Transect 3	Rivel Level Transect 3	Flow Transect t	Riv Lev Trans
_	Precipitati	spiration	Daily Flow		m3/s	m	m3/s	m	m3/s	m	m3/s	m
Date	on [mm]	[mm]	[m3/s]		0	228.62	0	228.59	0	228.71		
F	c.1	c.2	63		0.001	228.65	0.001	228.62	0.002	228.74		
F	0.1	0.2	0.0		0.005	220.00	0.002	220.65	0.003	220.77		
	PP	ETP	Q		0.009	228.74	0.005	228.71	0.009	228.83		
01/01/1000	1 700	1 17/	0.701		0.014	228.77	0.008	228.74	0.014	228.86		
01/01/1999	1.700	1.174	0.791		0.021	228.8	0.013	228.77	0.021	228.89		
02/01/1999	0.717	1.17	0.783		0.031	228.83	0.019	228.8	0.031	228.92		
03/01/1999	0	1.192	0.718		0.044	228.86	0.027	228.83	0.044	228.95		
04/01/1999	0	1.172	0.672		0.061	228.89	0.037	228.86	0.061	228.98		
05/01/1000	0	1 108	0.728		0.107	228.95	0.068	228.92	0.108	229.04		
00/01/1000		1.130	0.720		0.139	228.98	0.088	228.95	0.141	229.07		
06/01/1999	U	1.18	0.865		0.176	229.01	0.113	228.98	0.179	229.1		
07/01/1999	0	1.182	1.145		0.22	229.04	0.143	229.01	0.225	229.13		
d												
				Linoar	intorno	lation	/		<u> </u>			
				``			-					

2. Ribav Parameters

3. Example of specific data of each simulation Point

	E. SIMUL	ATION POI	NT DATA	
	Soil		Pertainin	Observed
Point	Surface	Soil Type	g	Vegetatio
	Elevation		Transect	n Tvpe
1	236.133	4	1	ΤV
2	232.898	4	1	ΤV
3	230.499	2	1	RA
4	230.697	1	1	ΤV
5	231.447	1	1	ΤV
6	232.197	1	1	ΤV
7	232.969	4	2	ΤV
8	232.219	4	2	ΤV
9	231.469	4	2	RA+TV
10	230.765	4	2	RA+TV
11	230.809	1	2	ΤV
12	231.611	1	2	ΤV
13	232.361	1	2	ΤV
14	233.135	4	3	ΤV
15	232.922	4	3	ΤV
16	232.172	4	3	RA+TV
17	230.31	4	3	RA+TV
р				

Ribav Program Forms

		Image: State of the s
1.Main Menu	2. Soil Parameters	3. Vegetation Parameters
1 Hudro motoorological	5. Rating Curves	6. Daily River Levels
Input Data		
	7. Simulation Point Data 8. Simula	ations Results Form

1.Main Menu

📰 RibAv Mo	odel						
Soil 🚺	Vegetation	2 Hydrometeorology		MINISTERO DE MEDIO AMBENTE Y MEDIO ALBAL Y MARINO	(Ciii)	Instituto de Ingenieria del	
						Agua y medio amoiente	
Creating N	lew RibAv F	roject:					
			How would you like the project to be called?				
	Project		lorcha1				
		oad Default Input D	ata Automatically				
	-						
Estado							
🛃 Inicio) 🕑 🙂	🔰 🤌 ն Debug	📰 RíbAv Model				ES 🔇 K 🐼 17:14

2. Soil Parameters Form

RibAv Model.	meteorology	CORING TRAINING	Instituto de Ingeniería del Agua y Medio Ambiente	
Soil Parameters 1 2 3 4 5 6 7 8 10	Description: Sueb arenotos y línoso Ponotily [} 0.401 Bubbling Pressure [KPa] 5.837 Pore Index [} 0.4556 Saturated Conductive Index [] 0.4556 Saturated Conductive Index [] 0.19 Monitore at Field Capacity [] 0.18 Considered (m) 17 Load Default Data Save Erase Data	Sol Parameters Text Sol Microscope (5) (5) Matrix Potential (15-9] Next Next		
🛃 Inicio 🛛 🙆 🖉 🦉	Debug 🔛 RibAv Model	👹 Olbujo - Paint		ES 🔍 K 18:43

3. Vegetation Parameters Form

Negetation Parameters		
2 Vegetatio	on Types:	
3 Description:	Riparian Herbs	
Maximum Roo Depth [m]:	t Transpirator Facto from Unsaturated Zone []:	or Maximum Soil-Root Water Conductance 0.97 [mm Mpa-1 h-1];
Effective Root Depth [m]:	0.6 Transpirator Facto from Saturated Zone []:	0.6 Matrix Potential at Wilting Point [KPa]: (Typical value=1500 KPa) 1500
Extinction Saturation [m]:	-0.75 Plant Cover Density []:	1 Matrix Potential at Critical Point [KPa]: (Typical value=95 KPa)
	Load Default Data Save Erase Data	Back

4. Hydro-meteorological Input Data

ly In	puts:	Load	Erase	Save	Default	
	1					
	Date (dd/mm/yy)	Precipitation (mm)	Potencial Evaporation (mm)	Daily Flow (m3/s)		
•	01/10/1998	0	2.215	0.791		
	02/10/1998	0	2.511	0.783		
	03/10/1998	0	2.598	0.718	Back	
	04/10/1998	0.827	2.598	0.672		
	05/10/1998	0.353	2.215	0.728		
	06/10/1998	0.1103	2.392	0.865		
	07/10/1998	0	2.392	1.145		
	08/10/1998	0	2.249	1.181	Next	
	09/10/1998	0	2.081	1.177		
	10/10/1998	0	2.333	1.249		
	11/10/1998	0	2.416	1.27		
	12/10/1998	0	2.815	1.267		
	13/10/1998	0	2.361	1.248		
	14/10/1998	0	2.394	1.222		
	15/10/1998	0	2.451	1.197		
	16/10/1998	0	2.424	1.24		
	17/10/1998	0	2.571	1.188		
	18/10/1998	0	2.271	1.222		
	19/10/1998	1.1826	1.982	1.12		
		-		C		

5. Rating Curves

ſ	Load		Default	Erase	Sa	ive	Calculat	e Daily Flows Next)	Back		
	Flow 1 Q (m3/s)	River Level1 H (m)	Flow 2 Q (m3/s)	River Level2 H (m)	Flow 3 Q (m3/s)	River Level3 H (m)	Flow 4 Q (m3/s)	River Level4 H (m)	Flow 5 Q (m3/s)	River Level5 H (m)	F
	0	228.62	0	228.59	0	228.71	0	228.68	0	228.828	0
	0.001	228.65	0.001	228.62	0.001	228.74	0.001	228.71	0.001	228.856	0.
	0.003	228.68	0.002	228.65	0.003	228.77	0.002	228.74	0.002	228.884	0.
	0.005	228.71	0.003	228.68	0.005	228.8	0.003	228.77	0.004	228.912	0.
	0.009	228.74	0.005	228.71	0.009	228.83	0.006	228.8	0.007	228.94	0.
	0.014	228.77	0.008	228.74	0.014	228.86	0.01	228.83	0.012	228.968	0.
	0.021	228.8	0.013	228.77	0.021	228.89	0.016	228.86	0.018	228.996	0.
	0.031	228.83	0.019	228.8	0.031	228.92	0.023	228.89	0.026	229.024	0.
	0.044	228.86	0.027	228.83	0.044	228.95	0.034	228.92	0.037	229.052	0.
	0.061	228.89	0.037	228.86	0.061	228.98	0.047	228.95	0.051	229.08	0.
	0.082	228.92	0.051	228.89	0.082	229.01	0.065	228.98	0.068	229.108	0.
	0.107	228.95	0.068	228.92	0.108	229.04	0.086	229.01	0.089	229.136	0.
	0.139	228.98	0.088	228.95	0.141	229.07	0.112	229.04	0.116	229.164	0.
	0.176	229.01	0.113	228.98	0.179	229.1	0.143	229.07	0.148	229.192	0.
	0.22	229.04	0.143	229.01	0.225	229.13	0.18	229.1	0.186	229.22	0.
	0.272	229.07	0.179	229.04	0.28	229.16	0.224	229.13	0.23	229.248	0.
	0.332	229.1	0.221	229.07	0.344	229.19	0.275	229.16	0.283	229.276	0.
	0.402	229.13	0.271	229.1	0.418	229.22	0.334	229.19	0.344	229.304	0.
	0.482	229.16	0.328	229.13	0.503	229.25	0.402	229.22	0.415	229.332	0.
	0.574	229.19	0.394	229.16	0.601	229.28	0.48	229.25	0.496	229.36	0.
	0.677	229.22	0.47	229.19	0.713	229.31	0.568	229.28	0.588	229.388	0.
	0.794	229.25	0.556	229.22	0.839	229.34	0.667	229.31	0.693	229.416	0.
	0.925	229.28	0.654	229.25	0.981	229.37	0.779	229.34	0.811	229.444	1.

6. Daily River Levels

Date	River Level(m)_1	River Level(m)_ 2	River Level(m)_ 3	River Level(m)_ 4	River Level(m)_ 5			
01/10/1998	229.249	229.286	229.329	229.343	229.439			
02/10/1998	229.247	229.284	229.327	229.341	229.437			
03/10/1998	229.231	229.267	229.311	229.324	229.422			
04/10/1998	229.219	229.255	229.299	229.311	229.41			
05/10/1998	229.233	229.27	229.314	229.326	229.424			
06/10/1998	229.266	229.304	229.345	229.361	229.455			
07/10/1998	229.324	229.363	229.401	229.42	229.509		-	_
08/10/1998	229.33	229.37	229.407	229.427	229.515		i and	
09/10/1998	229.33	229.369	229.406	229.426	229.515		Load	
10/10/1998	229.342	229.382	229.418	229.44	229.527			
11/10/1998	229.346	229.385	229.422	229.443	229.53			
12/10/1998	229.346	229.385	229.421	229.443	229.53			
13/10/1998	229.342	229.381	229.418	229.439	229.526			
14/10/1998	229.338	229.377	229.414	229.435	229.522		Save	
15/10/1998	229.333	229.372	229.41	229.43	229.518			
16/10/1998	229.341	229.38	229.417	229.438	229.525			
17/10/1998	229.332	229.371	229.408	229.429	229.516			
18/10/1998	229.338	229.377	229.414	229.435	229.522			
19/10/1998	229.319	229.358	229.396	229.415	229.505			
20/10/1998	229.263	229.301	229.343	229.357	229.452	~		
- 111.				Ва	.ck		Next	

7. Simulation Point Data

	Observed Vegetation Description	Vegetation Cover	Observed Veg. Acronym	Observed Veg. Code	Horizontal Distance (m)	Transect	Soil Type	Elevation (m)	Simulation Point
	Terrestrial Vegetation	1	TV	54	-33.197	1	4	236.133	1_1_54
	Terrestrial Vegetation	1	TV	54	-28.197	1	4	232.898	1_2_54
Load	Terrestrial Vegetation	1	TV	54	-23.197	1	4	231.45	1_3_54
L	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-18.197	1	4	230.722	1_4_21
	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-13.197	1	4	230.431	1_5_21
-	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-8.197	1	4	230.268	1_6_21
Erase	Riparian Herbs + Riparian Trees or Big Shrubs	1	BH+BA	18	-3.197	1	8	229.964	1_7_18
L	Riparian Herbs	1	BH	19	-0.4	1	7	229.589	1_8_19
	Riparian Herbs + Riparian Vegetation or Small Schru	1	RH+RJ	8	12.363	1	10	229.31	1_9_8
	Riparian Herbs	1	BH	9	15.952	1	9	229.516	1_10_9
Save	Riparian Vegetation or Small Schrubs	1	RJ	10	19.541	1	2	230.176	1_11_10
	Riparian Trees or Big Shrubs	1	RA	13	25.523	1	2	230.499	1_12_13
	Terrestrial Vegetation	1	TV	14	29.91	12	1	230.697	1_13_14
	Terrestrial Vegetation	1	TV	55	33.84	1	1	231.447	1_14_55
Default Da	Terrestrial Vegetation	1	TV	55	36.607	ĭ	ĩ	232.197	1_15_55
L	Terrestrial Vegetation	1	TV	54	-27.87857002	2	4	232.969	2_1_54
	Terrestrial Vegetation	1	TV	54	-26.19246649	2	4	232.219	2_2_54
	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-23.3985	2	4	231.469	2_3_21
	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-18.3985	2	4	230.765	2_4_21
	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-13.3985	2	4	230.574	2_5_21
	Riparian Trees or Big Shrubs + Terrestrial Vegetation	1	RA+TV	21	-8.3985	2	4	230.388	2_6_21
	Riparian Herbs + Riparian Trees or Big Shrubs	1	BH+BA	18	-3.3985	2	8	230.31	2_7_18
		1	BH	19	-2.199	2	7	230.31	2_8_19

8. Simulations Results Form

Vegetation Production	GORBINO DE BRANA Y HI		Agua y Medi
🦉 Simulations			
- Output data will be exported to CS from the project folder - Simulations will take some time	SV textfiles	Simulate and Expo	rt Data
Virtich data files do you want to create? ✓ Calibration Table (Basic Information) ☐ General Data (Extended Information)		Back.	
Simulation STARTS at: 26/04/2010 18:48:14 STARTING Calculations Simulating point 0 out of 50 Simulating point 1 out of 50 Simulating point 2 out of 50 Simulating point 3 out of 50 Simulating point 4 out of 50 Simulating point 6 out of 50 Simulating point 7 out of 50 Simulating point 9 out of 50 Simulating point 10 out of 50 Simulating point 10 out of 50 Simulating point 11 out of 50 Simulating point 11 out of 50 Simulating point 12 out of 50 Simulating point 13 out of 50 Simulating point 13 out of 50 Simulating point 13 out of 50 Simulating point 14 out of 50 Simulating point 14 out of 50	CutputData Archivo Edición Ver Peve Archivo Edición Ver Peve Archivo Edición Ver Peve Archivo Joaqu Tareas de archivo y carp Crear nueva carpeta Publicar esta carpeta en Cutros sitios Iorchal Mis documentos Mi PC Mis sitios de red	oritos Herramientas Ayuda Püsqueda Carpetas III In/Pruebas Programas/RibAv1D/Ribav1D 2- Leta Calibration Mat Article Calibration Mat S KB Calibration Mat S KB	- - Abr-10_correction Windows7(bi ♥ → Ir rik larcha1 pres separados

9.a. Calibration Table (Basic Information)

Archis	vo <u>E</u> dición ⊻er I	nsertar <u>F</u> ormato	Herramientas	Datos Venta	ana <u>2</u>								Escriba una	pregunta	- 1
i		1 🧐 🎎 🔏 🛛	5 🛍 • 🥑	n - m - 1	🔒 🧶 Σ - 🛓	XI 🛄 🞯	🗧 🗄 Arial		- 10 - N	K § 🗐 🗮		9 % 000 €	*0 *0 7	💷 - 🖉	
A1	← fx A B	C	D	E	F	G	Н	1	J	K	L	M	N	0	T

ALIE	BRATION MATRIX p	roject_ 8952													-
															-
	1 75 /	0.00004407	0.40740207	0.40740207	0.55504707										
	2 TV	0.30234195	0.40710397	0.40710337	0.00034737					-		-			-
	3 TV	0.41742141	0.42751030	0.02270303	0.0344022							-	-	-	+
	A RA+TV	0.41742141	0.40100020	0.97256002	0.67396301							-	-	-	
	5 RA+TV	0.86827517	0.99601153	0.99913989	0.50295375							-	-		-
	6 RA+TV	0.95776453	0.99877168	0.99859432	0.40724392										
	7 RH+RA	0.96551015	0.99681738	0.99494334	0.22908959										-
	8 RH	0.99922929	0.92837077	0.81292055	0.03204763										-
	9 RH+RJ	0.9983972	0.4860541	0.52940711	0.00020442										-
	10 RH	0.99904269	0.88702931	0 74876203	0.01412991										-
	11 RJ	0.98661813	0.99848235	0.99817852	0.35324955										-
	12 RA	0.80327082	0.98981388	0.99926948	0.54289857								-		-
	13 TV	0.79998087	0.94260499	0.99928971	0.65926634										-
	14 TV	0.43350188	0.51066029	0.6842593	0.99694093										-
	15 TV	0.39495159	0.44623879	0.57706124	0.98636147										
	16 TV	0.38016843	0.42735699	0.61870399	0.63049464										
	17 TV	0.39129376	0.4423816	0.70556732	0.79645744										
	18 RA+TV	0.418244	0.4828323	0.78215326	0.9963546										
	19 RAITV	0.56412941	0.8843474	0.97157421	0.67742584										
	20 RA+TV	0.7695818	0.98387888	0.99937417	0.56515666										
	21 RA+TV	0.9155648	0.9983466	0.9989465	0.45589795										
	22 RH+RA	0.73124809	0.72575011	0.77101417	0.41009689										
	23 RH	0.53309217	0.59128349	0.64629871	0.41009689										
	24 RH+RJ	0.9983972	0.5779654	0.57379058	0.00067173										
	25 RH	0.47059638	0.54831852	0.60526756	0.40129175										
	26 RJ	0.80423916	0.98934677	0.99929311	0.54282977										
	27 RA	0.70342345	0.96247931	0.99945475	0.61923029										
	28 TV	0.79920273	0.92153357	0.99926354	0.70329285										
	29 TV	0.42415443	0.49145322	0.65903567	0.9984271										
	30 TV	0.39065172	0.44007179	0.55997149	0.94204568										
	31 TV	0.37870272	0.42550966	0.60216679	0.61898234										_
	32 TV	0.38130554	U.42883006	0.6293098	U.64094953										
	33 RA+TV	0.39338828	U.44485244	0.71406828	U.86933667					-					_
	34 RA+TV	U.40082849	U.4542679	0.73840918	0.9988921										_
	35 RA+TV	0.55109239	U.88344855	0.9719377	U.67841434										_
	36 RA+TV	U./6864389	0.98462083	0.99936677	0.566/2978										_
	37 HA+TV	0.89995624	0.99829727	0.99904762	0.4/165422										-
	38 RA+IV	0.9/2/8383	0.99883262	0.99868957	0.38581728										+
	39 RH+RA	0.77078736	0.76862651	0.80116625	0.38581728										+
	40 RH	0.09197700	0.03703955	0.06786486	0.38581728								-		+
	41 RH	0.9818/766	0.99403614	0.96454468	0.13908974										+
	42 RH+RJ	0.99849593	0.97790018	0.91052305	0.08351824								-		+
	43 KM	0.54494526	0.70038603	0.73228034	0.35294757					-		-	-	-	+
	44 80	0.200000/	0.410002/5	0.00441030	0.00000226				_	-		-	-	-	+
► H	Calibration Mat	ix project_ 895	i/ 0/ 4400 54	d ann 22h l	0.072808007				<						
														NUM	
												1	1. 1.	10011	

9.b General Data for a given simulation point for a given vegetation type

1. General Characteristics of Ribav 2D

Although the mathematical model conceptualization is the same as in Ribav 1D, It uses raster grids instead of using simulation points.

•It requires a greater quantity of data than Ribav 1D and it takes more time to carry out the simulations.

•It is able to integrate within Ripflow.

2. Internal and External Ribav Parameters

2. General Input Data

			Hydrometeorological Files			
Soil Types Map	C:\Documents and Settings\joareall\Escritori	Change Soil Type Map	Daily Hydrometeorological Data	C:\Documen	ts and Settings\joareall\	Change Hydrometeorologic Data
nitial Vegetation Types Map	C:\Documents and Settings\joareall\Escritori	Change Initial Vegetation Type Map	River Level Maps	C:\Documen	ts and Settings\joareall\	Change River Level Maps
			[River Flow	Map File	^
Digital Elevation Model Map	C:\Documents and Settings\joareall\Escritori	Change DEM Map		0		met\Wte
				0.25	\Data\INPUT\Hydroi	met\Wte
				0.47	\Data\INPUT\Hydro	met\Wte
				1	\Data\INPUT\Hydro	met\Wte
cup III El				2	\Data\INPUT\Hydroi	met\Wte
5V Parameters File:	3			5	\Data\INPUT\Hydro	met\Wte-
				10	\Data\INPUT\Hydro	met\Wte
Soil Parameters File	C:\Documents and Settings\joareall\Escritori	Change Soil Parameters File		Ŷ		
/egetation Paramete File	rs C:\Documents and Settings\joareall\Escritor	Change Vegetation Parameters File		_ [[

3. Vegetation Dynamics

Actual Eva	potranspiration	Index Ranges	
1	ET Index	1	
	Succession	0.80 Succession	
	Maintains Stage	2	Back
-	Retrogression	Retrogression Threshold	Load
0 lirectory to save Dy C:\Documents and	namical Vegetation Maps: I Settings\joareall\Escritori	u io\Ribav2D code\Ribav2D code\Ri	bav2D\bin\Debug\Data\OUTPUT\Dy
lirectory to save Ev	apotranspiration Index Maj	ps: io\Bihav2D.code\Bibav2D.code\Bi	hav20\hin\Dehun\Dela\011TPUT\FT
frectory to save Ev	apotranspiration Index Maj I Settings\joareall\Escritori	ps: io\Ribav2D code\Ribav2D code\Ri	bav2D\bin\Debug\Data\OUTPUT\ET

4. Simulation Screens

SCII Raster Files					
		Hydrometeorological Files			
oil Types Map C:\Documents and Settings\joareall\Escritori	Change Soil Type Map	Daily Hydrometeorological Data	C:\Documents a	and Settings\joareall\	Change Hydrometeorologica Data
itial Vegetation ypes Map C:\Documents and Settings\joareall\Escritori	Change Initial Vegetation Type Map	River Level Maps	C:\Documents a	and Settings\joareall\	Change River Level Maps
inital Flavation			River Flow (m3/s)	Map File	^
odel Map C:\Documents and Settings\joareall\Escritori	Change DEM Map		0		st\Wte
			0.25	\Data\INPUT\Hydrome	et\Wte
			0.47	\Data\INPUT\Hydrome	st\Wte
			1	\Data\INPUT\Hydrome	et\Wte
Simulation Information			2	\Data\INPUT\Hydrome	st\Wte
			5	\Data\INPUT\Hydrome	st\Wte-
Simulation STARTS at: 27/04/2010 12:21:21	<u> </u>		10 ~~	\Data\INPUT\Hydrome	st\Wte
Simulating YEAR 1 out of 10			<	luit.	5
Simulating YEAR 2 out of 10					
Simulating YEAR 3 out of 10		hientas Ayud	a		
Simulating YEAR 4 out of 10		eda 🔀 Carp	etas 🛄 -		
Simulating YEAR 5 out of 10		- Initia on a de	loiter op endeloite		
Simulating YEAR 6 out of 10			Ribavzo code (Riba		IPOT(ETIIOexmaps 💽 🛃
Simulating YEAR 7 out of 10		Ar	indexEndYear_1 chivo ASC		findexEndYear_2 rchivo ASC
Simulating YEAB 8 out of 10			18 KB	35	56 KB
Simulating YEAR 9 out of 10		1	indexEndYear_3		FindexEndYear_4
Circulating VEAD 10 art at 10		A7 35	i6 KB	35	57 KB
Simulating TEAM TO OUL OF 10			indexEndYear_5		FindexEndYear_6
Simulation ENDS at: 27/04/2010 12:22:18		Ar 35	chivo ASC	Ar 35	rchivo ASC 50 KB
The simulation lasted: 00:00:57.3753672			and the doctor of		seder sedver a
		Ar 35	indexEndYear_7 chivo ASC i6 KB	Ar 35	rchivo ASC 59 KB
	×		indexEndYear_9 chivo ASC i6 KB		FindexEndYear_10 rchivo ASC 59 KB
			NEW YORK		

5. Directory Structure of Ribav 2D

6. Internal structure for the Ribav2D files

Types of files: •ASCII files \rightarrow I/O maps •CSV files \rightarrow Parameters (soil and vegetation) \rightarrow Hydrometeorological series \rightarrow File Paths

All files in the Ribav 2D module have a **relative path** (from the Ribav executable) to make more easy integration with RIPFLOW.

6.1 ASCII Map files

2	Aicrosoft	Excel -	Libro1							
:	<u>A</u> rchivo	<u>E</u> dición	<u>V</u> er <u>I</u> nserta	ar <u>E</u> orma	ato <u>H</u> err	amientas	Da <u>t</u> os	Ve <u>n</u> tana	2	
: 🗅	🞽 🔒	6	🖪 🗳 🍣	1 🕰 🐰	la 🖺	- 🝼	9 - 0	- 🕃 🤇	🤰 Σ 🗸	$\begin{array}{c} A\\ Z \end{array} \downarrow \begin{array}{c} Z\\ A \end{array}$
	A1	-	fx-							
	A		В	С	D	E	F	G	Н	
1	ncols		250							
2	nrows		172							
3	xllcorner		733225.79							
4	yllcorner		4304029.01							
5	cellsize		0.5							
6	NODATA	A_value	-9.9							
7		857.13	857.13	857.13	857.13	857.13	857.13	857.13	857.13	857.1
8		856.37	856.37	856.37	856.37	856.37	856.37	856.37	856.37	856.3
9		855.99	855.99	855.99	855.99	855.99	855.99	855.99	855.99	855.9
10		855.4	855.4	855.4	855.4	855.4	855.4	855.4	855.4	855
11		855.16	855.16	855.16	855.16	855.16	855.16	855.16	855.16	855.1
12		855.04	855.04	855.04	855.04	855.04	855.04	855.04	855.04	855.0
13		854.75	854.75	854.75	854.75	854.75	854.75	854.75	854.75	854.7
14		854.54	854.54	854.54	854.54	854.54	854.54	854.54	854.54	854.5

Example of a Digital Elevation input file in ASCII format

Ncols: Number of columns in Map
Nrows: Number of rows in Map
Xllcorner: X coordinate of the bottom(south)- left(west) corner
Yllcorner: Y coordinate of the bottom(south)- left(west) corner
Cellsize: dimensions of the square cells
NODATA_value: value of the cells that are irrelevant and do not take part in the simulation

6.2 CSV File

Soil Type

Soil parameters

Key; Porosity; Porosity Index; Bubble Pressure; Saturated Conductivity; Field Capacity Moisture; Minimum Capillary Depth; Soil Description

Archivo
1;0.39 2;0.43 3;0.44 4;0.40 5;0.41 6;0.43 7;0.41 8;0.43 9;0.39 10;0.4

Another example of CSV file \rightarrow Flow-WTE File Map

Flow (m3/s); Map with Water Table Elevation related to that flow (m.a.s.l.)

Three Methods:

Through text files
 DLL Files
 Using CLI from MS Visual Studio.net

Methods to integrate Ribav 2D within Ripflow

1. Integration through text files

Advantages:

- •Relatively easy to integrate with ArcGis and Python.
- •Easier to carry out modifications.
- •More easy to understand input and ouput flows within both modules.
- •Recommended in the first version of Ribav.

Disadvantages:

•Less performance speed.

•Not very intuitive for a non-expert user

5.Methods to integrate Ribav 2D within **Ripflow** iiama

Actual example of Textfile usage:

5. Methods to integrate Ribav 2D within Ripflow

2. DLL Files

- They stand for Dynamic Link Library and they are implemented for the Microsoft shared library for Windows.
- They are files that store functions and subroutines and can be created/loaded in different programming languages.
- The main characteristic is that they are "**Encapsulated**", so a programmer can use them without knowing their internal code, only by defining their parameter inputs and expecting the outputs.
- They normally have a .dll extension although they can have a .ocx if they are related to the Directx graphic library

5. Methods to integrate Ribav 2D within Ripflow

3. Microsoft studio CLI

- It stands for Common Language Infrastructure.
- It is a component of the .NET framework which permits the usage of different programming languages in the source code of a program.
- To do this it uses an intermediate language called CIL (Common Intermediate Language) to which the various source code languages (C#, C++, VBasic...) are translated during the compilation.
- At runtime the CIL language is converted to the native code that the operating system or the computer understands.

5. Methods to integrate Ribav 2D within Ripflow

CLI Flow Diagram

Example of a Project in Visual Studio 2008 with modules in different languages (C# and VB.net)

Å